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Acoustic analysis for a moving source with application
to an isospeed ocean

G.M. Jacyna and M.J. Jacobson

Rensselaer Polytechnic Institute, Troy, New York 12181

J.G. Clark

Gt i el e I

Institute for Acoustical Research, Miami, Florida 33130

bt

Using ray theory, a gererel analysis is presented for the

4

treatment cf the effects of sound-source :noticn on the total

§ acoustic field at a fixed receiving point. Sound speed is
depth-dependent and the cw source follows an arbitrary path

_ with arbitrary velocity. The received signal is interpreted
.- as a waveform of arbitrary frequency whose amplitude and phase

are time-dependent. Application of the theory is made

W T T, TS

to a constant sound-speed channel in which the source follows

a short straight-line path with constant speed, and a linearized
acoustic model is developed. Both primary and cumulative
acoustic phase are examined as functions of time for various

source-trajectory directions. An averaged Doppler-shift

frequency, as well as unaveraged source frequency, is considered.

] Maximum phase change occurs for radial source motion and minimum

T ™

s change occurs for circumferential motion. Finally, acoustic
phase is investigated when the source follows a long straight-

line path. An approximate formula is derived for cumulative

phase, which is found to be a hyperbolic function of time.
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INTRODUCTION
Ray theory has been used extensively in the study of acoust..
transmissions in an underwater channel, where the position of

both a point source and point receiver are assumed fixed. Aspects

CoET e TR,

of the roving sourca problem have been treated in relation to its
1,2,3

—pe

effects on radar. However, results are not generally

applicabile in an underwater environment because refraction,

boundarv reflection, the coherent summation of multiple arrivals,
and othar effects are not usually considered. Only recently

have investigations been directed toward consideration or the
4,5

moving source problem in underwater acoustics, Computer results i

RS AL i’ syt & L A SR o L

for total-~field phase and amplitude were presented in the case

e bbbl ani

of a source noving radially outward at fixed speed from a fixed

receiver, when a specific deep-water sound-speed profile is

i bt i

assuned,

:
]

The intent of this paper is twofold. We wish to present an
analytical technique whereby a stationary sound-source

problem can be transformed into a moving source problem,

ircludirg a careful explanation of Doppler effects for a cw
sound source. In addition, to illustrate the technique, we
consider a specific moving source prublem in an isospeed channel.

The velccity of the source is chosan constant, but its direction

with respect to a fixed receiver is not restricted to the radial
case. The total acoustic field is analyzed for both short-and
long-range runs of the source,

In Sec. I, a general ray-theory treatment of the moving

source problem is investigated, in which a general technique
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is formulated for determining Doppler effects for a ¢w source
moving with arbi’ -ary velocity over an arbitrary smooth curve
in three-dimensional space. A discussion of the effects of
source motion on ray geometry, boundary reflection theories,
spreading loss, and travel time leads

to total-field equations, In an illustration of the general
approach, Sec. Il deals with a specific moving source problem
for the case of a constant sound-speed medium, bounded by a
horizontal surface and bottom, where both the sound source and
receiving point are located on the ocean bottom, and where the

source is assumed to follow a straight-line path with constant

speed. General equatinns developed in Sec. I are used to construct

the total-field phase and amplitude as a furnction of receiver
time. In Sec. III, certain restrictions are imposed, under
which a linearized mcdel of the relationship between acoustic

phase and receiver time is developed and exjplored in detail.

Phase variation for a source following a long straight-line path

with constant speed v is examined in Sec. IV. In particular,
a relation between phase and receiver time is developed and
used in sampling phac: along the entire source trajectory. In
addition, an approximate expression fcr relative cumulative
phase for all receiver times is derived. Sectiovn V summarizes

the principal rerults of this paper.

I. GENERAL TREATMENT
We begin by taking a receiving point R to lie at the
origin of a Cartesian system in which the x and y axes are

horizontal and the z axis is vertical. Suppose that, at any




instant in time, a point sound source § also lies in the x-y
plane and has velocity x.with corresponding speed denoted by v.
It is well known that, for "line of sight" transmission, as

é shown in Fig. 1(a), the frequency fR detected at the receiver

E differs from the frequency f cmitted at the source.6 1€ the
distance between the source and receiver remains counstant, the
wavelength detected at & is ) = ¢/f, where ¢ is the (constant)
speed of sound. However, if the source moves as shown in

Fig. 1l{(a), then at any instant in time it is effectively moving
é away from k. witnh a speed v cos §, when 0<y<n/2 rad. The motion
Ef is voward R for ~/2<y~ 7 rad. If’ﬁ\describes the receiver-

? source positicen vector at any instant in time, where R is the

corresponding distance, then the resultant wavelength detected

at the receiver a time R/c later is equal to

Yo = le+v cosy)/E, (1) ‘i

and the resultant frequency is
- - -1 ‘
£, = c/,\R = f{1 + (v/c)cosy] . (2)

In the case of radial source motion, we find that

_ o -1
fR = f(1 + v/c) , (3)

where the plus sign corresponds to ¢y = 0 and the minus sign *o

w = m, In essence, the term v cosy can be interpreted as the

scalar projecticn of the velocity'x\onto the negative ray

direction, where in this case the negative ray divection is
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that ofﬂ&. Letting vp denote this scalar projection, we may

write

£, = £(1 vp/c)'1 : (4)

The same technique can be applied when a moving source
follows an arbitrary path ' with arbitrary velocity in three-
dimensional space where the sound speed is a function of depth,
the source and receiver are at arbitrary depths, and the source
depth may change with time. Letaﬁ(g) denote the position vector
from the receiver to the source at a time Q. and let‘x(g) = q&(d%
denote the corresponding velocity vector, as shown in Fig. 1(b).
Even when sound speed is constant, the possibility of boundary
reflections leads to a family of rays which propagate from the
source to the receiver. If we let en(§) denote the angle at
the source of the nth ray, measured from the x' direction, and

~

let ﬁn(t) denote the unit vector associated with the negative

nth-ray direction at time t as shown in Fig. 1(b), then

A

~ _ " . ~
Nan(t) = cCcSs Bn(t) g + sin Bn(t) Al& ' (5)

where'£‘ andﬁ& are unit vectors in the x' and z directions,
respectively. Note that X' measures horizontal directed
distance in the vertical plane containing the ray and that

en < 0(9n>0) for a ray directed upward (downward) at the source.

The scalar projection of v(t) »nto u_(t) is
MA man
v_(t) = v(t)-u (t) = |v(t)|cos p(t) , (6)
P MA el v

where the angle Y (i} is determined by’XAand u when their
Ml
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initial points coincide. Applyina Eq. 5 to Eq. 6,

-,\ ~ . , ~ . . : ot A . . -~

vp(t) [Vx(t)J:\y(tL£+Vz(‘)§J \cosen(tn%‘+51n6n(t{&]
2
x

TR 4T 3R Y RO L ST T e e
1

2~ ]-1/2

[Rx(t)vx(t)+Ry(t)vy(t)]cosen(t)[R (t)+RY(t)

+vz(t)sin€n(t) ' (7)

where i, j, and k are unit vectors in the x,y, and 2z directiocns,
M A Ll

respectively, and

LT [Rw(g)i + Ry(gia][Ri(g) + Ri({)]-l/z

MA N WA

(8)

is the unit vector in the positive x' direction. A subscript

T e TR BRSO Y T T T T e

on R and v refers to the component oflﬁ andlx in the correspondirg
direction. When the source path T lies in the x-y plane,

v, = 0 and Eg. 7 simplifies to

vp(t) =~£(t)-x$t)coson(t) , (9) H
3 ) @
. where r{(t) = i' :

M A

TR YO

Since the source is moving, the frequency associated with

ety

the nth ray detected by the receiver at a time t is not the

frequency corresponding to the source pesition at . Rather,
it is that corresponding to the source position at an earlier

time. Letting tn describe the time associated with the

continuous emission cf the nth ray from the source, there

exists a relationship between source time tn and receiver

time t given bhy

L=t - Tn(tn)’ (10)
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where T, is the travel time of the nth ray. Observing from Eg. 10

that tn is an implicit function of t, we have

t, = Fn(t) ' (11)

so that Tn(tn) may be rewritten as Tn(t). Clearly, the freguency
of the nth ray detected at a time t is the frequency of the ray
;i ; emitted at the time tn = t—Tn(t). Evaluating Eq. 7 at tttn and

using this transformation,

.\ - ~ - - - ~ “2 )2 ] 7Y
i vp(tn) = vp(t) = [Rx(t)vx(t)+Ry(t)vy(tﬂ cosen(t) [Rx(t)+Ry.t)]

7 * vz(t)sian(t) ' (12)

] . .

: where Rx,y.z(t) = Rx,y,z [Fn(t)], vx,y,z(t)gvx,y,z[Fn(t)]' and

en(t) = en[Fn(t)]. The corresponding ‘requency at the receiver,

] analogous to Eq. 4, is
1/2

i

ey S - "2 2, -
frn(t) = £ [1+{ [R, (£)V, (£)4R (), (£)]cOSE, (t) [R) (£)+RL (£)]

el e U (Pl

- - - -1
+ v, (t)sing_(£)}e T (v) ] : (13)

whare c(t) represents the sound speed at the source depth at

| i

receiver time t. If Eq. 9 is used in the case where I lies in

the x-y plane, then Eg. 13 simplifies to

= e es o) cosd (61l L]
fRn(t) = f[lﬁﬁ(tizx(t)lcosen(t)‘c (t)] . {14)

At the receiver, the contribution of the nth ray at time t is

PRSPPI SO

b !
An(tn)51n len(t)tn+Sn(tn);

v ()

-~ . ‘ -~ . - I
An(t)51n {an(t)[t Tn(t)J + Sn(t)l ' (15)
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where £, = t—Tn(t) is given by Egs. 10 and 11, An(t)=An[Fn(t)]
is amplitude, Sn(t)=sn[Fn(t)j is phase 'change resulting from

surface and/or bottom reflections, if any, and an(L)=2W£Rn(t).
If the nth ray experiences no boundary reflections, then Sn(t)EO.
Substituting Eq. 13 into Eq. 15 with w=27f, we obtain

- T w e e ~o1 -
V_(t)=A_(t)sin [w : 1+ [Ry (£)V, (£)+R_ (£)v, (£) )67 (t)cose (t)

~ ~ -1/2 . ~ . Tt S N
2 2 -1 . ,
x [Rx(t)+Ry(t)] +v, (t)e (t)51nen(t)‘ [t-Tn(t)]+Sn(t)] 5

(16)

We now turn to a brief discussion of the phase term Sn
and the amplitude An in Egs. 15 and 16. If Rayleigh reflection
theory'7 is used, then, at any one reflection of the nth ray

from a horizontal boundary,

-s1/2 “l/ZI
<o (i = - 2__ .2 2
Boexplic) =| (o /o) = [t /e =cos%0, | [1-cos®s ]

_l/2 -1/2 ) -1
x g(om/pw)+[(cw/cm)z-coszewJ [l-coszew] 1 . (17?

In Eq. 17, the subscript w refers to the water while m refers
to the medium on the opposite side of the réflecting boundary
eithe; the ocean bottom or the atmesphere. The quantity Bn
is the amplitude loss at a reflection of the nth ray, €h is

the shift in phase there, and the symbol i represents the

imaginary unit. By Snr.. 1l's law,

cost =[c /c(t ))coss (t )=[c /c(t)]cosb (t). (18)

When Eqg. 18 is substituted into Eq. 17, it becomes apparent that
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ampliitude loss and phase shift at a boundary reflection, in

yeneral, are time-dependent. 1In addition, the number N of

N bottom reflections and the number M of surface reflections of
the nth ray may be time-dependent, so that we should write
N=N_(t )=N_(t) and M=M (t )=ﬁ (t). If we make the usual

n n n n'n n
assumption of no amplitude loss and a m-rad phase shift at a

surface reflection, then the contribution of all boundary

haaballn e At i A

reflections to A_(t) is exp [ﬁn(t)lnﬁn(t)] and gn(t) is given by
s _(t) = Nn(t)en(t)+an(t), (19)

. where Bn and € refer only to a bottom reflection. If the nth
r ray experiences no bottom reflections at time t, then Nn(t)EO;

if it does not reflect from the surface at time t, then Mn(t)EO.

Of course, other reflection models may be considered. If, for

example, a frequency-dependent model8 is employed, then the

b
B
3

variation of frequency with time, as described in Eq. 13, must
be included.

When the sounu source and ocean medium are stationary,
when sound speed is depth-dependent only, and when the ocean
channel possesses horizontal boundaries, the contribution of 3

l/2

spreading loss L to amplitude is L~ » where L has been

written as .10

X (20) ]

L = IR(51n8x/coseo)0R/880

In Eq. 20, £ is the ray angle at the source, 6, is the ray
angle at the receiving point, and R is the horizontal distance

between source and receiving point. It has been shownll that
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a non-stationary ocean requires corrections in the spreading loss,
hbecause a moving ocean causes an omnidirectional source to

become direétional and because rays are no longer normal to
wavefronts. However, the corrections are negligible in an
isospeed, uniform-current medium when the ratio of current speed
to sound speed is small. Since there exist some analogies

between a moving source and a moving medium problem, corrections
in Eq. 20 are expected here also. However, in subsequent sections,
source speed will be a small fraction of the speed of sound so
that Eq. 20 will be assumed to be applicable. In using Eq. 20

for the nth ray, R should be :eplaced by i(t)=R[Fn(t)] and

6, by 5n(t)=0n[Fn(t)]' where Fn(t) is given by Eg. 11 and where

R=(R5+R§)l/2. Further, from Snell's law, lsinex[ should be

1/2, where cr is the sound

speed at the fixed receiver. The contribution of spreading loss

replaced by {l-[cR/;(t)]zcoszen(t)}

to amplitude is, therefore,

. ~ ~ 2 ~ 1/2 ~ -1
-1/2 _ i1 2 f
L (t) = |R(t) ‘l [cR/c(t)] cos Bn(t) lcosen(t)
- ~ -1/2
x BR(t)/BGn(t) . (21)
Thus the amplitude of the nth ray at the receiver is
A (t) = L7Y2 (¢)expIN_(£)1nB_(t)] (22)
n n P8, n '

where B_ is given by Egs. 17 and 18, and L;l/z is given by Eq. 21.
With the phase term Sn and amplitude An known from Egs. 19

and 22, respectively, the receiver arrival Vn associated with

Lo

PR 2 2

TR TR YISO DRSNS LTSN AT K2 ST SErh T T8, WP PUNSTRRET USRI TR & T B
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the nth ray is known from Eq. 15 or 16. In order to determine
the total acoustic field at the receiver, we elect to add and
subtract the factor «t in the argument of the sine in Eq. 15.

The quantity w is any constant, but arbitrary, circular

frequency. Then

? Vn(t) = An(t)31n[wt+¢n(t)] ’ (23)
E

E where

: e (eran (e '
% ¢n(t) = an(t)t—wt—an(t)Tn(t)+Sn(t) . (24)
2

% The tontal field may be expressed as

y VT

A(t)sin[at+d(t)] = Zin(t)sinlﬁtwn(t)] , (25)

TR

where the amplitude A and phase ¢ can be determined from the

following system of eguations:

i

) - 2 - 2 &

AT (t) = [}:An(t)simbn(t):l +[2An(t)cos¢n(t)] ' (26) :

: sin o (t) = A" (t) £A_(E)sine_(t) (27)
| cos o (t) = A_l(t)Z;x (t)cosd_(t). (28) 3
£ n n 3

Since A(t) and ¢(.) are time-dependent, it is apparent from

Eg. 25 that the total acoustic field at the receiver is not a

sinusoidal function of time. However, it may be interpreted

L L L R

as a signal with constant circular frequency 5=2nf, having

time~deprandent amplitude A and phase ¢. If f is chosen to be
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the frequency emitted by the sound source, then w=w=2Tf in Egs.
23-28. A second procédhre, similar to thet of Ref. 4, is to

average frequency over the first N' significant ray arrivals

and over a time interval 1. If we define

Aw

Y

_1 N'=1 ,t'+71
CIET R D T PSR O LT (29)
n=o t : :

where t' is some constant value of receiver time, then w should
be replaced by w+Aw in Egs. 23-28,
The above results are too general to predict the presence

of shadow and caustic boundaries at any instant of time. These

boundaries are important, however, since they can be expected

I
;
i

to lead to discontinuities in Doppler shift and diffraction

e

effects. Once sound speed, receiver location, source path, and

source velocity are selected for use in a particular application,

T

these prenomena can be examined.

II. THE ISOSPEED CHANNEL

In some special situations, the moving source problem
simplifies greatly. To illustrate the general treatment of

Sec. I, we consider here the case of a constant sound-speed

. i e ke
AT SR-L IS T v Y

medium of depth H, bounded by a horizontal surface and bottom. E
Both the sound source and receiving point are located on the

ocean bottom, and the source is assumed to follow a straight-

o AUSTE B4 4o 2Lk asihak




T e T

T

g

e m e AT GTTARRERLDTR TR T I TR A AT

- 13 -

line path with constant speed v. Shadow and caustic boundaries
cannot occur in an isospeed medium. Suppose, for definiteness,
that the source § is located a distance R from the receiving
point ® at time t=¢Q. Also, let the angle o in the ocean
bottom describe the direction of the source trajectory where

+ = $(0). The source-receiver geometry appears in Fig. 2(a),

while Fig. 2(b) shows the first two rays from the moving source

to the receiving point. Note that the index n equals the number

of bottom reflections of the nth ray, and that the source

location changes with n.

From geometric considerations, the distance between 8

and R at time t is given by

- j 2 A !1/2
+2thcosa‘ . (30)

R(E) = [R(E)] = |R%+(vt)

i

The scalar projection of X\onto the negative direction of the
nth ray (from receiver to source), given by Eg. 9, may be

written as

fr 2

(£)coss_ (£)=6v|[r (E)-stinzujl/z/R(g):cosen(g),

)3 o ..«Y/\
(31)

where R = sgn[v€+Rcosa] and where en(E) describes the angle
at the source of the nth ray at time t. As discussed in
Sec. I, the frequency of the nth ray detected by the receiver
at time t 1is not the frequency associated with the source
position at t but, rather, is that corresponding to the source
position at time L, = t—%n(t), where 5n(t) = Tn[Fn(t)] by
application of Eg. 1l1. Under such a transformation, Eq. 31

with E=tn may be expressed as

sttt Dot

ST Ry S
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vp(t)=8v}[Rz(t)-stinza]l/z/i(t):cosen(t), (32)
where ﬁ(t)=R[Fn(t)] and 5n(t)=6n[Fn(t)]. The corresponding
frequency at the receiver is, analogous to Eq. 14,

-1

’

fRn(t)=f[}+sv}[iz(t)—kzsinza]l/z/i(t)fc'lcosén(t)]

G3)

where ¢ is now a constant. Since the travel time of the nth

ray is

2,1/2 -1

- I Rr®
T, () = | R (¢ )+{2(n+)H]" ¢ © , (34)

Fn(t), given by Eq. 11, can be determined explicitly.
Specifically, from Egs. 10,11,30, and 34,

- < -1 2 -1 2,2 .2
;n—Fn(t) = l[t+RMc cosal [Tno+2RMtc cosa+M” (t Tno
+ R2 %cos2q) ]2 {(1-M2)'1/2 , (35)
where M=v/c is called the Mach number and
i 1/2
Tno = ‘Rz/cz + [2(n+1)H/c]2: (36)

is the travel time of the nth ray if the source were stationary

at (x,y)=(0,R). The laui.ch angle 6n(t) may be determined from

= .z (z2 2!‘1/2
cossn(t)—R(t)lR (t) + [2(n+1)H]" ’ B7)

where ﬁ(t) can be found from Egqs. 20 and 35 with €=tn. Thus,

from Eq. 33, the corresponding circular frequency at the

receiver is

RS
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L]

‘ Wen (E)

2 2.2 1/2( 2 L y2p2
an w[}Tno+M Fn(t)+2RM(cosa)Fn(t)/c’I ,'[Tno”‘ F_(t)

+

ZRM(cosa)Fn(t)/011/2 +BM[R2(cosa)2/c+M2Fn(t)

4+

-1
2RM(cosa)Fn(t)/Cll/2 ] ' (38}

wher= Fn(t) is given in Eg. 35.

We now make the usudal assumption of no amplitude loss

and a m-rad phase shift at a surface reflection. If Rayleigh

T R SR T T o

reflection theory is used a: each reflection of the nth ray
from the horizontal bottom, then the use of Egs. 18 and 37

enables us to write Eq. 17 as

F B (Bexplic, (011 = [(o/0)- (e /e - R(6) /2 (ne1) ) 2

X 2 "1/2][ iy 2
- [1‘(Cw/cm) 1 (P /p )+ (c /<) -[R(t)/2(n+l)H]

11/2] ]
X [l—(cw/c ) ]s . (39)

Although this result could be used in Egs. 19 and 22, we i
choose to make instead the simpler assumptions of a 2-dB loss and

a m-rad phase shift at each bottom reflection. Then, the f
contribution of all boundary refiections to the ampli:ude

~

A of each ray arrival is 10-0'1n, and the phase Spe given ;

by Eq. 19, becomes

Sn(t) = nn+ (n+l) 7= 7 (mod 2m). (407
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From Egs. 30, 35, and 37, R and 5nare known and the contribution

of spreading loss to amplitude is, from Eq. 21,

~1/2
-1/2 _ ol 2.2 : .
Ly " T(e) = c 7 T  +MTF| () +2RM(cosa) T (t) /¢ . (41)

where hn(t) is given by Egq. 35. Thus the amplitude of the
nth arrival, given by Eq. 22, becomes

~

_ -90.ln .-1/2
An(t) = 10 Ln (t). (42)

With Sn'An'an' and Tn known, the nth arrival Vn, given

by Egqs. 23 and 24, is

-l/2
Vn(t)—lo c ITno +M Fn(t)+2RM(COSQ)Fn(t)/C‘

x sin [at+¢n<t>1 , (83)

. U N P 11/2(¢ 2 .22,
s () w[,frmm Ff (£)+2RM(cosa) F (t) /e |~/ %) [1) +4°F] (&)

+2RW(cosu)Fn(t)/c]1/2+8M[chosza/c+M2Fi(t)+2RM(cosa)

-1
an(t)/c]l/Z: ]{t-}T§O+M2Fi(t)+2RM(cosa)Fn(t)/c{1/2]—5t+v.

(44)
The total field is now known from Eqg. 25, and its amplitude and

phase from Egs. 26-28.

ITII. LINEARIZED MODEL

Under certain assumptions, it is possible to expand Egs. 43
and 44 in powers of the Mach number M. 1In particular, an
expansion that keeps only linear terms in M greatly simplifies

these equations while preserving the effect of source motion.
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Wher. the ravio of source speed to sound speed is small (M<<1),

1
?
i
1
L

such a linearizetion is valid when restrictions are placed on
time duration,and, sui.dequently, source movement.

If one performs a linearization in M of Eg. 44, then

é ¢n(t): 2Mnnw(cosa)Tno-ZMnnw(cosa)t—ano+(w-w)t+n ' (45)
i_ where

% { 21°1/2

ﬁ’ N, = R/T ¢ = 1+[2(n+1)H/R]7 . | (46)

A similar linearization of in(t). given in Ec 42, leads to

~ v 1a=0.in -1 _ 1y
An(t)~ 10 R U &l Mnn(cosa)(t/'rno )i . (47)

A further simplification of Egs. 45 and 47 is pussible if H<<R

and n is not too large. 1In such a case, nn: 1-§ and TnO:(R/c)(l+6)

o
e s it it i

] whare 6=2[(n+1)H/R]2<<1. If n, is replaced by unity and T
X .

by R/c only in those terms containing M in Egs. 45 and 47, we

fa i

; obtain 3
|
1 ¢n(t)ZZMch—lcosu-ZMw(cosa)t—ano+(m-E)t+u , '48) b
i

and 3

1

Atz 10791 g7 o [1-M(cosa) (ct/R-1)] . (49) ;

Of course, the remaining N, and Tno terms may be approximated

also, if desired. The corresponding total acoustic field,

given in E3. 25, may now be expressed as the imaginary part of
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A(t)exp i{wgt+¢:t)]Z[1=M(cosa) (ct/R~1)]exp i[3t+2MuRe™?

‘-1
‘ xcosa=-2Mw (cosa) t+ (w=-w) t] 3: 1°-o'lnn-1“ne*pi(—”Tno+")'

(50)

T

Although the summation in Eq. 25 contains an infinity of

terms, its rapid convergence permits its termination. 1In

Eq.

o TR AP T T

50 we have kept N' terms where, for example, N' miaght

be choser. so that the amplitudes of subsequent arrivals

are less than 0.01 that of the n = Q ray. The termination

PR

justifies the earliexr assumptinn that & is small when H<<R,

, The summation in Eq. 50 represents the approximate total field
3

for a stationary source at (x,y)=(0,R). Since this location

corresponds to t=(Q, we shall write the corresponding amplitude

f and phase as AO(O) and @O(O), respectively. Thus,

: ¥l -0.in -1 E
1 Ay (Q)exp 1 ¢o(0)~ - 10 R nneXpl(—ano+n). (51) .

T T

e &

'he reason for our selective approximations in Eqs. 48 and 49

15 now clear: we are able to express the complex form of the f

total field as the product of a source-motion factor and the total

field for a stationary source, where each term in the latter is

exact. If a term expiwt is cancelled on each side of Eq. 50

and if Eqg.

51 is employed, a comparison of the moduli and
1
arguments in the resulting equation leads to the following l

linearized approximations for the total-field phase and

amplitude:

st d s b 3 T aRar e
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i - 19 =
¢(e):z @o(O) ~ 2Mw (cosa) (t=R/c)+(w= w)t , (52)
ana
a(t)~ AO(O) [1-M(cosa) (ct/R-1)] . 53)

Since w is usually large, Mw is not small even for a slowly
moving source. Thus Eq. 52 suggests that the effect of source
motion on phase variation is significant, in general. However,
the effect on amplitude variation is negligible if Mc/R<<]l,

53 If w is chosen to be the circular frequency w at the

source, then Eq. 54 simplifies to
¢(t) = ¢l(t): ¢°(0)-2Mm(cOSQ)(t-R/c). (54)

- A second procedure, outlined in Sec. I, is to average frequency
over the first N' significant ray arrivals and over a time

; interval t. When we carry out an average analobgous to Eq. 29,

3 we obtain
AwX - Mw(cosa) , (55)

where the right-hand side is just the D»Hppler shift associated ]
with the n=0 ray. If we take w=w+Aw, with Aw wiven by Eq. 55,

then Eq. 52 gives

d(t) = ¢,(t) = ¢0(0) - 2Mw (cosa) (t/2-R/c). (56)

We observe from Egqs. 54 and 56 that both @1 and @2 are %

approximately linear in time, where we have assumed that |t|




£
F

g T

s €

- 20 -~

is small, Furthermore, the total-field phase is the same for

—

a o= o and a = - a,r 8o that it is necessary to examine phase
only for O<a<m rad. Differentiation of Eq. 54 with respect

to time leads to the observation

T - 8y (t)

¢;(t) (57)

Q

a=mT=0

Q Q

Thus, the slopes of the ¢l versus time curves for a=o, and
asr-a are equal ir magnitude but opposite in sign. 1In other
words, source trajectories with a compcnent approaching

toward or receding from the receiving point at the same rate
give rise to the same magnitude of phase-rate. These comments
apply to ¢2 as well. If Eq. 56 is differentiated with respect

to receiver time and compared with the derivative of Eq., 54,

we see that

¢l(t) z 2¢2(t) . {58)

Therefrre, the rate of change of phase with averaged frequency,

<

v4r 1s only half that of the phase with unaveraged frequency,
e

The relative phases ®1—¢0 and ¢2~¢o appear versus time in
Figs. 3 and 4 for selected values of the source-trajectory
angle u in deg. For these figures we selected the parameter
values R=10 km, c = 1500 msec *, v = 10 kn, and f = 350 hz.
Although the water depth H does not appear in Egs. 52-58, it

will be recalled that our results assume _hat H/R is small.

e et kR a i A s R e s AT S
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With the above parameter values and H = 100m, Egs. 52, 54, and
56 were found to be in excellent agreement with the exact phase
given by Eqs. 26-28 and Egs. 43-44, when the time interval was
restricted to approximately =-5.0<t<5.0 min. However, Figs. 3
and 4 show a time interval of half this amount. The lower
horizontal axes indicate the directed distance r in km traveled
by the source from its position at time t = (0. Figure 3
illustrates the linearity of phase over a relatively short

+ime interval and the fact that the slopes of the phase curves

© and a=(180-ao)° are equal in magnitude but opposite

for a=a
in sign. Note in Fig. 3 that, over the 5.0 min interval
shown, the phase variation is as much as 730 cycles, where
the maximum variation occurs when the sound source follows

a radial path (0=0°,180°). When a=90°, the source trajectory
is tangent to the circumferential direction at t=0 and the
approximate phase variation is zero as expected, since the
source-receiver range is virtually unchanged. Figure 4 is
similiar to Fig. 3, but shows the relative phase ¢2-¢o when
average Doppler shift is included. In agreement with Eq. 58,
curves in Fig. 4 have only half the slope of corresponding
curves in Fig. 3.

Primary phase is phase modulo one cycle, and Wwill be
indicated in this paper by the subscript p. Both the primary
relative phases [¢l—¢°]p and [®2—¢o]p appear in Fig. 5 over
the time interval -5.0<t<5.0sec when the source moves radially

outward from the fixed receiver (a=0°). As in Figs., 2 and 4,
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it is observed that phase variation is decreased by one-half
upon inclusion of an averaged Doppler-shitt frequency. The

two curves are qualitatively similiar to corresponding results

in Ref. 4, even though phase variation in that reference was
calculated for a deep-water sound-speed profile and for s

i different parameter values,

IV. THE LONG TRAJECTORY
Under the assumptions of the previous section, we now .
k consider the source to follow a long straight-line path with ]

constant speed v. We let d denote the distance of closest

approach of source to receiver and let t=(0 describe the time

at which 8 is the distance d from (R . Suppose now that

the source is a distance R(to) from +he receiver where a(to)

; is the corresponding angle subtended by the source-path and

receiver-source directions, as shown in Fig. 6. 1In Secs. II i
E and I1I, R represented the initial distance between source and ﬁ
r . receiving point at t=0, and ¢O(0) described the phase of a
1 stationary source at a distance R from the receiver at i

{ time t=0 in Eq. 54. In that equation, w was chosen to be the

circular frequency at the source, and we shall restrict our-

selves to this case here. The analog of Eg. 54, for ¢ expanded

£
k|
1
]

1

about tO rather than zero, is

~

d(t) = @O(to) - 2Mw[cosa(t0)][(t-to)—R(to)/C], (59 )

where [t—tol<<l and ¢_(t_ ) is the phase of a stationary source

at time t=t_. Now, let t_ be the time required for & to travel

PRPRCYIIRY
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from the point P of closest approach to R to the generic

position shown in Fig. 6., If the distance traveled is r and

3 : : if the speed of 8 is v, then r=vt_. Both R(t,) and a(tg)

are found from the following expressions:

l
i
:
-
;.
H
:
E

!
R(e ) = (@222 = crase) 22y V2, ( 60)
? f and
§ 5 cosa(t )= vt_ [d +v? ty ] A Mtc[(d/c)zﬂllztg]-l/2 .
b :
; :
% (61)
P
b
% UsingrEqs. 60 and 61, Eg. 59 may now be expressed as
. 2 o2 2,,2,2,-1/2, _ |
; ¢(t) ~ o (t )+2M wt -2ZM wto[(d/c) M7t ] (t-t)) (62)
t
for [t-t | < 5 min and H/R<<l. If we let &(t,t )=d(t)=-o_(t)
Q denote the phase relative to that :° a stationary source at the

: position corresponding to t=t_, then Eq. 62 can be rewri.tten

as

- 2 27Y/2 ;
d(t,t) 3 -2M e [(d/c) v t>] (-t ) =11 . (63)

TR T ]

In Fig. 6, primary phase [<I>(t,to)]p is sampled for seven

20 sec intervals over a period cf 2 hours or a source travel of

EEREIPR P R U

approximately 37 km, for d = 10 km. When tO:O, it is seen

that the effect of a slowly moving source on phase variation

is negligible. Such a result is consistent for a source path éf
tangent to the circumferential direction, as discussed in the ;j

previous section and shown by the a=90° curve in Fig. 3. As
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|to| increases from zero, a steady increase in the magnitude
of phase variation is observed. For large values of |to|,
the source is effectively moving along a radial path from the
fixed receiving point, where maximum phase variation was
predicted in Fig. 3 by the a=0° and a=180° curves.

A continuous representation of approximate relative
cumulative phase, rather than primary phase, can be formulated
since it is reasonable to assume that all time derivatives of
the phase exist in some neighborhood of each value of tof
Then, to within the order of the approximations made in the
previous section, Eq. 62 represents the first two terms of
the Taylor series for ¢(t) about the point t=to. Since the
Taylor coefficient of (t-to) is ¢'(to), we have from Egq. 62

that

o' (e ) = - 2M2wto[(d/c)2+mzt§1'l/2 ) (64)

Integration of this result with respect to to gives

2,1/2

®(t ) = -2w{(d/c)2+M2tO] +C, (65)

where C is a constant of integration. Because we are

interested only in relative cumulative phase, we select

i C = 2wd/c in order to make $(0) = 0. In addition, we write !

t in place of to to obtain

o(t) x-20((d/c)2+m?t%11/2 4 2ua/c . (66)

i'or larce values of |t|, Eq. 66 becomes

e N
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¢A(t) r=2Mwlt! + 2wd/c . (67)

Thus the magnitude of the rate of phase variation is
approximately constant for large |t|, as observed in Eq. 62
or in Fig. 3 as o approaches (0° or 180°. Further, Eq. 67
may be construed as an upper bound on the cumulative phase.

The approximate cumulative phase, given by Eq. 86, is
plotted as the solid curve in Fig. 7 over an eight-hour time
period or a correspending source-travel distance of 148 km.

The phase is observed to be hyperbolic and its asymptotes,

given by Eq. 67, are graphed as dashed lines. The figure
reiterates previous conclusions. For t = 0, the source is

near its point of closest approach to the receiver, and phase
variation differs little from zero. As |t| increases, a

rapid increase ia variation is observed, which approaches a
constant when the source trajectory is effectively radial
relative to the receiving pcint. The cumulative phase, Eg. 66,
is a global result that was obtained from a local result, Eg. 62.
Since the latter is only approximate, Egs. 56 and 67 need not be

accurate for very large values of [t].

V. SUMMARY

This paper presents an c¢nalysis for the treatment
of the effects of sound-source motion on the total acoustic
field at a fixed receiving point in the ocean. The source
emits a cw signal, and may follow an arbitrary path in three-

dimensional space with arbitrary velocity. Sound speed is

srsar
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taken to be depth-dependent. Using ray theory, it is explained
how source motion affects ray geometry, frequency, travel time
and spreading loss, and boundary loss and phase shift., It is
shown ho» the movement of the sound source leads to a received
signal that may be interpreted as a waveform of arbitrary
frequency whose ampiitude and phase are time-depcndent.
Application of the general theory is made to a constant
sound-speed channel with horizontal boundaries in which the
sound source and recelving point are locatad on the ocean
bottom. The source is assumed to follow a straight-line
path with constant speed. A simplified linearized acoustic
model is developed when source speed is much less than sound
speed and when the ocean depth is much smaller than the source-
receiver range. The results are valid over a sufficiently short
time interval, and the effect of cource motion on acoustic phase
variation is shown to be highly eiqnificant. Both primary and
cumulative phase are examined as functions of time for various
directions of the source trajectory. The same magnitude of
phase-rate is obtained for source trajectories with a component
approaching toward or recediny from the receiver at the same
rate. Maximum phase change occurs for radial source motion,
while minimum change occurs fcr circumferential motion. For
selected parameter values, acoustic phase is shown to change by
hundreds of cycles over a time interval of only a few minutes.

When the arbitrary frequency, discussed above, is taken to be
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the average Doppler-shift frequency associated with the first
; _— ray arrival, the phase variation at the receiver is only one-

; half the variation when the frequency is chosen to be that of

the signal emitted at the source.

The above phase results, which are local in time, are
extended to the global case in which the sound source follows
; 'i a long straight-line path at constant speed. When the source
‘ is near its point of closest approach to the receiver, phase
variation is small. However, a steady increase in variation
is observed as the source departs from this point. An

] ' approximate fcrmula for cumulative phase is developed with

the result that this phase is a hyperbolic function of time.

The asymptotes of the hyperbola provide a bound for the ~%

E : approximate cumulative phase and an estimate to it when the

PSR

sound-source location is far from its point of closest approach

to the receiver.
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FIGURE LEGENDS

FIG. 1.

FIG. 2.

FIG. 3.

FIG. 4.

FIG. 5.

FIG. 6.

FIG. 7.

Doppler effect and yeometry for a moving sourze and
fixed receiver.

Geometry for linear, constant-speed source motion and
two typical ray paths.

Relative phase versus receiver time and source travel
for selected source angles: w=w, R=10kn, c=1500msec‘l,
v=1l0kn, and £=350hz.

Relative phase versus receiver time and source travel
for sélected source angles: w=w+Aw, R=10km, c=1500msec” T
v=10kn, and f=350hz,.

Primary relative phase versus receiver time and source
travel for the source angle a=0° and w=w and w=w+lw,
respectively. Other parameters as in Fig. 3.

Primary relative phase versus receiver time and source
travel sampled over a 2 hr interval for w=w and d=10 km.
Other purameters as in Fig. 3.

Cumulative relative phase versus time and source travel

over an 8 hr interval for w=w and d=10 km. Other

parameters as in Fig. 3.
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